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BALLISTIC  RESEARCH  LABORATORIES 

MEMORANDUM REPORT NO. 9^7 

REDeitrick/bdb 
Aberdeen Proving Ground, Md. 
November 1955 

EFFECT OF A HEMISPHERICAL BASE ON THE AERODYNAMIC CHARACTERISTICS OF SHELL 

ABSTRACT 

The addition of a hemispherical base to a square based model 

produces marked dynamic instability. A comparison of the aerodynamic 

characteristics of square and hemispherical based models is given. 

Estimates of the damping and Magnus forces of the hemispherical based 

model are obtained. The reason for the instability is quite clear 

although the mechanism which produces this result seems quite complex. 
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INTRODUCTION 

A program of 20mm models with square and hemispherical bases was fired 

in Exterior Ballistics Laboratory's small aerodynamic free flight spark 

range in order to try to determine comparative aerodynamics of these 

configurations. The results obtained from the 52 rounds which could be 

reduced are given in this report. The four types of models fired con- 

sisted of the basic 5-183 calibers long, square based model and three 

modifications: (1) the addition of a hemispherical base, (2) the 

addition of a 0.556 caliber cylinder, and (3) the addition of a O.556 

caliber cylinder plus a hemispherical base. The second modification 

was made to determine whether the added length of the hemisphere was 

the cause of instability, and the third modification was made to aej 

if the addition of the hemisphere to the longer model gave the same 

type of changes as the first modification. AU four models can be 

seen in Figure 1 with the dimensions being given in Figure 2. The 

customary methods of data reduction* ' were used. 

AERODYNAMIC COEFFICIENTS 

The drag coefficient as obtained from the least squares fit of a 

cubic equation in distance down range to the time interval contains the 

effect of the variation of this coefficient with yaw as shown by 

*D ' ho + \2 *  '• 

Since there were very few rounds which had different yaws at essentially 

the same Mach number, it was not possible to determine K_ _ by a fit of 

- 2 5 

L to J . A value of K- 2 = 2.0 per radian squared was therefore 
5 

assumed in order to determine the values of K_ (see Figure 7)- Values 

of the spin deceleration coefficient, K,, could not be determined 

because pins for a spin reduction were not placed in the bases of the 

models. 

"Additional data on hemispherical based shell can be found in Reference 7. 

,w&mmmmi*mw»imti» 



Although there is a variation of K~ with the yaw, the yaw for this set 

of rounds is so small that the correction has been neglected. The curves 

for K_ as shown in Figure 8 seem to be quite well defined and show an 

appreciable difference between the square and hemispherical based models 

which is not attributable to experimental inaccuracy. It was felt that 

the values of IC. for corresponding bases were within the accuracy of 

determination, therefore only one curve for each type of base was drawn. 

There is not enough data in the transonic region to accurately deter- 

mine the shape of the K_ or the IC. curve in the neighborhood of M = 1. 

The general trend of the curves of IL. and KL, vs. Mach number have, 

therefore, been drawn to agree with Reference 2. Since the overturning 

moment coefficient is contaminated by the different cm. locations for 

the different models, the values of KL. for the square based models have 

been evaluated at a point which is the same distance from the nose of 

the cm. of the hemispherical based model of comparable length and are 

denoted KL* (see Figure 9). The plot of the center of pressure of the 

normal force shown in Figure 10, together with K_, are probably even 

more descriptive of the effect of the hemispfeärical base on the over- 

turning moment than the plot of IC.. 

The curves of the Magnus moment in Figure 11 are some of the better 

determined curves obtained from this firing. Again there is a distinct 

difference in the values of the hemispherical and square based models 

especially in the range of M ? 1.1. Again it was felt that only one 

curve for each base type was warranted. Since the swerve due to the 

Magnus force for all of these rounds, was less than the accuracy of 

measurement the determinativ.i of K_ with any degree of accuracy was 

impossible. 

The damping moment coefficients in Figure 12 also show only a 

trend, but they do Indicate a distinct difference in the two types of 

bases which is not attributable to experimental error. Values of the 

damping force could not be obtained since models of the same configura- 

tion but with different center of mass location were not fired. 
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The values of the coefficients near Mach = 1 may he affected hy the 

interference of reflected nose shock waves with the afterbody of the 

model, therefore there is some doubt as to their accuracy. 

DISCUSSION 

The outstanding difference in the shadowgraphs of the square and 

hemispherical based models is the flow over part of the hemisphere and 

the resulting shock wave when the boundary layer separates from the 

base, as is shown in Figures 3 and 4. 

I 

There is a very distinct difference in the drag coefficients of 

the square and hemispherical based models, with the hemispherical base 

displaying a noticeably greater drag than the square based models 

(see Figure 7). The drag for a short, large angled boattail is higher 

than that for a square based missile as is shown in Reference; k and is 
(5) 

theoretically discussed by J. Sternbergv . The separation of the flow 

from the hemispherical base in essence gives a short, large angled 

boattail. 

The normal force is increased by the addition of a hemispherical 

base to the rear of a regular square base. The largest difference in 

K_ for the two types of bases is in the transonic region. Since the 

center of pressure of the normal force is moved rearward by the 

addition of the hemispheric«.,! base as seen in Figure 10, it seems that 

there has been an increase in the pressure difference at the rear of 

the projectile. This pressure difference could be the result of the 

difference in separation points of the boundary layer on opposite 

sides of the hemispherical base and the resulting shock wave. The 

separation angles, which are defined as the angles made by the radius 

vector from the center of the sphere to the point of separation and 

the model's axis as illustrated in Figures 5 and 6, were measured on 

numerous plates. Only in a very few cases measurable differences in 

the separation angles on the two sides of the projectile were obtained. 



I 

■ . 

;- 

« 

Two photographs illustrating a large difference In separation angles 

are shown in Figures 5 and 6 «here a difference of 3 and 2 respectively, 

was measured. 

The largest difference in the normal forces and their centers of 

pressure as well as in the overturning moments is in the transonic region 

with the difference decreasing for increasing Mach number. This indicates 

that there are changes in the flow forward of the base due to the 

additional shock wave at the point of the boundary layer separation from 

the hemispherical base. This disturbance could be propagated forward 

in the boundary layer and also in the potential flow at transonic Mach 

numbers. With the aid of this observation the change in the normal 

force coefficient due to the addition of a hemispherical base can be 

checked by means of the change In the overturning moment coefficient 

and some assumptions about the location of the normal force. 

Since the overturning moment coefficients for the square based 

models have been evaluated at the position of the cm. of the corresponding 

hemispherical based models, the difference In the coefficients should 

be completely due to the change in the flow caused by the addition of 

the boattail. Munk*s linearized slender body theory predicts a change 

in the normal force on a projectile corresponding to the change in its 

cross sectional area. Therefore, it seems reasonable to assume that 

the coefficient, ZSC,, which represents the change in normal force 

coefficient d'ie to the addition of the hemisphere will act at a point 

in the region In which the projectile is undergoing the decrease in 

cross sectional area. The effective boattail is from the beginning of 

the hemisphere to the separation point, and is about 0.10 calibers in 

length. It will be assumed that AK_ acts at the middle of this region. 

For the short hemispherical based model, where the beginning of the 

hemisphere is 1.65 calibers behind the cm., the distance from the 

cm. to AK., is 

C.P. .jj. ■ 1.70 + 0.2 calibers, 

10 
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and for the long hemispherical based model, where the beginning of the 

hemisphere is I.92 calibers behind the cm. 

C.P. 
"w 

1.97 + 0.2 calibers, 

where the + 0.2 caliber is used to give a probable limit to the value. 

If the value of the change in 1L. between the square and hemispherical 

based models of corresponding lengths is obtained from the graph in the 

appendix and it is assumed that 

where 1L. is the moment coefficient for the hemispherical based model, 

then £K-  can be computed. Using this £K_ and K_ - KL + AK_, the following 

table shows a comparison of predicted and observed values of 1C_. 

Mach Calculated Calculated Observi 
Humber 

*H h h 
0.9 O.lS + 0.02 1.11 + 0.02 1.12 
0.9 O.lß + 0.02 1.11 + 0.02 1.12 
1.6 -0.006 + 0.001 1.011* + 0.001 1.10 
1.6 0.000" 1.02 1.10 

Type* 

S3 
IB 
SH 
LH 

These show good agreement with the observed values, especially at 

M - 0.9. 

! I 

The *»-£*«e moment coefficient for the hemispherical based models is 

markedly negative in the transonic region and seems to be approaching a 

zero or positive value as the Mach number increases as shown in Figure 12. 

Since a positive K_ Indicates that there is a resistance to the change 

in yaw, the negative K_ means 'hat the amount of yaw is being increased. 

Under these circumstances the projectile is unstable. 

On the basis of the good agreement obtained for the estimate of 

the normal force coefficient, It is felt that a fairly good estimate of 

Kg can also be obtained in the same manner. 

* Model types are identified in Table I of the Appendix. 

11 



The damping force is considered to be the same type of phenomenon 

as the normal force, i.e., caused by the change in the momentum of the 

potential flow. The velocity field, hovever, is the result of the 

velocity induced by the cross spin rather than the cross velocity due 

to yaw. It therefore seems reasonable to assume that the location of 

AKg is at the same place as ZSC^. Although Kg for the square based 

models is not known, a comparison of the known force coefficients of 

this report with those in References 2 and 5 indicate that the forces 

for the two slightly different models are about the same within about 

5*. 

Therefore, using References 2 and 3, it is assumed that Kg = - 6.0 

for the short and long square based models at M = 0.9. At M = 1.6 this 

value is - 4.0. These Kg values and the square based model Kg values 

of this report, which are at the cm. of the square based models, are 

evaluated at a point corresponding to the cm. of the hemispherical 

based models and listed in the following table. 

Model 
Type 

SS and LS 
SS and LS 

Mach 
Number 

0.9 
1.6 

V 
- 5.8 
- 3.8 

V 
- 2.6 

4.2 

Similar to the previous discussion it is assumed that: 

W - (C>3? W*s 
and 

The following table gives computed values of Kg. 

Model 
Type 

SH and IS 
SH and LH 

Mach 
Number 

0.9 
1.6 

Calculated 

2.5 + 0.5 
3.1 + 0.6 

Calculated 

h 
- 3.3 + 0.5 
- 0.7 + 0.6 

These estimates indicate that the change in damping force in a positive 

direction is quite pronounced. 

12 
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Figure 11 shows that the addition of the hemispherical base causes 

the Magnus moment to assume a large positive value even in the supersonic 

region. This condition alone is sufficient for instability. 

In Reference 6 it can be seen that the limits for dynamic stability 

are 

(1) ^ + k2"
2 Kg - V2 KA7 0, 

(2) 0 C  s L. 2, 

(5)       S ' S(2  -1»)  ' 

where s is the gyroscopic stability factor and s is the dynamic stability 

factor.* 

As shown in Table III of the Appendix, all of the hemispherical 

based models are gyroscopically stable (s y l). Only two of the models, 

13 

however, satisfy the dynamic stability condition that 0 <  s < 2, and 

these two models do not satisfy the condition that s> -IA  g\—. 

It is interesting to note that even if K_ were positive for the hemis- 

pherical based models, they would still not be stable because of the 

large positive Magnus moment. Average values of the coefficients for 

the hemispherical based models for this report are as follows: 

K^l.O ßf^O.5 

Kp^O.15 kx  ^10 

K^O.U k2"
2^0.6 

YL.'z-k.Q K. ^0.01 
n A 

With the aid of the conditions (l) and (2) for dynamic stability, 

an interesting observation can be made. If K_ = ^.O instead of being 

negative then 

1^ + k2"
2 1^ - k^2 KAÄ;1.0 + 0.6 (+4.0) - 10(0.01)^3.3 

♦Algebraic definition of s is given in the Table of Symbols. 



and the first condition is satisfied. The dynamic stability factor 

- ^-vV s = 

«L + k2 V- kl"2 KA 

2 Cl.O - 10(0.1»]] 
3.3 

1.8 

and the missile would still he unstable, since s is not between 0 and 2. 

A further examination of the Magnus effects shows an interesting 

feature about them. The Magnus effects are usually thought to be a 

boundary layer phenomenon. Since the effects of the additional shock 

wave on the hemispherical base would be felt upstream in the subsonic 

boundary layer and result in a change in the boundary layer character- 

istics, it is conceivable that there would be changes in the Magnus 

force and moment. The change in the Magnus moment is verified by 

Figure 11. 

The Magnus force coefficient is also estimated by the same procedure 

as was used for K„ and KL; however, the point of application of the force 

£K_, is assumed to be different than that for the other two forces. The 

relatively large rotating band is believed to be a natural boundary; 

therefore, the effect of the additional shock wave is assumed to influence 

the boundary layer flow only behind the rotating band. If £K_ is 

assumed to act at the center of the region between the rear of the 

rotating band and the point of boundary layer separation then, 

C.P.Atr = 1.1*0 + 0.2 calibers 

for the short hemispherical based model and 

S.P.At, * 1.1*0 + 0.1* calibers 
"T 

for the long hemispherical based model. The tolerance allows the force 

to have limits covering almost the whole effected region. Again using 

References 2 and 3 it is assumed that K= 0.08 and 0.15 for M = 0.9 

and 1.6 respectively for both the short and long models since there is 

no effect of length for the length of models usedv '. The graph values 

of K_, for the square based models are evaluated at a point corresponding 

to the cm. of the hemispherical based models to give the following table 

Hi 
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Model 
Type 

Mach 
Number «T      V 

SS and LS 
SS and LS 

0.9 
1.6 

0.39    0.40 
-0.13   -0.10 

As before it is assumed that 

-Vs (C.P.^AKj, 

and 
% = KF + <*F 

It is then found that the estimated values are as shovn in the following 

table 

Model 
Type 

Mach 
Number <*F                                 % 

Sfi and LH 
SH and LH 

0.9 
1.6 

- 0.09 + 0.02    - 0.01 + 0.02 
- 0.36 + 0.06    - 0.21 + 0.06 

The change in K-, seems to be a very outstanding indication of the affect 

of the hemispherical base since it changes from a positive quantity for 

the square based models to a negative quantity for the hemispherical 

based models. This change is very pronounced at M = 1.6. 
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FIG.   5.    Separation angle difference - 3( 

Rd.   3426-LH      M =  1. 035 
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FIG.   6.    Separation angle difference = 2C 

Rd.   3426-LH      M =  1.047 
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